MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 7

Lemma 1. (Silver) Let $\tau < \kappa$ be regular cardinals, such that $2^{\tau} \geq \kappa$. Suppose that T is a κ tree and \mathbb{P} is τ^+ -closed for some $\tau < \kappa$. Then forcing with \mathbb{P} does not add new branches to T.

Proof. Suppose otherwise. Let b be a name for a branch, forced to be such by the empty condition. Working in V, construct $\langle s_{\sigma}, p_{\sigma} \mid \sigma \in 2^{<\tau} \rangle$ by induction on the length of σ , such that:

- (1) Every $s_{\sigma} \in T, p_{\sigma} \in \mathbb{P}$ and $p_{\sigma} \Vdash s_{\sigma} \in b$
- (2) If $\sigma_1 \subsetneq \sigma_2$, then $s_{\sigma_2} <_T s_{\sigma_1}$ and $p_{\sigma_2} \le p_{\sigma_1}$ (3) For all $\alpha < \tau$, there is some $\beta_{\alpha} < \kappa$, such that for every $\sigma \in 2^{\alpha}$, $s_{\sigma} \in T_{\beta_{\alpha}}$
- (4) For every σ , $s_{\sigma \frown 0}$ and $s_{\sigma \frown 1}$ are incomparable nodes.

At limit stages we use the closure of \mathbb{P} . More precisely, if α is limit, $\sigma \in 2^{\alpha}$, let p'_{σ} be stronger than all $p_{\sigma \mid i}$ for $i < \alpha$. Also let $\beta_{\alpha} = \sup_{i < \alpha} \beta_i$. Then let $p_{\sigma} \leq p'_{\sigma}$ and $s_{\sigma} \in T_{\beta_{\alpha}}$ be such that $p_{\sigma} \Vdash s_{\sigma} \in \dot{b}$. We can find these since \dot{b} is forced to meet every level.

For the successor stage, suppose that we have constructed p_{σ}, s_{σ} and β_{α} , where $\sigma \in 2^{\alpha}$. Using the splitting lemma, since \dot{b} is a new branch, we have that there are conditions $q_{\sigma \frown 0}, q_{\sigma \frown 1}$ stronger than p_{σ} and nodes $s_{\sigma \frown 0}, s_{\sigma \frown 1}$, in $T_{\beta_{\alpha}+1}$ such that $q_{\sigma \frown 0} \Vdash s_{\sigma \frown 0} \in \dot{b}$ and $q_{\sigma \frown 1} \Vdash s_{\sigma \frown 1} \in \dot{b}$.

Now for every $f \in 2^{\tau}$, let p_f be stronger than all $p_{f|\alpha}$, for $\alpha < \tau$. Here we use that \mathbb{P} is τ^+ -closed, i.e. sequences of length τ have a lower bound. Let $\beta = \sup_{\alpha < \tau} \beta_{\alpha} < \kappa$. For every $f \in 2^{\tau}$, let $q_f \leq p_f$ and $s_f \in T_{\beta}$ be such that $q_f \Vdash s_f \in b$. Again here we use that b is forced to meet every level (since it is forced to be a branch).

But then by the splitting, we have that whenever $f \neq g$, $s_f \neq s_q$. But $|T_{\beta}| < \kappa$ and $2^{\tau} \ge \kappa$. Contradiction.

Corollary 2. Suppose that T is an ω_2 -tree, \mathbb{Q} is ω_1 -closed, and $2^{\omega} = \omega_2$. Then \mathbb{Q} does not add new branches through T.

Let G be M-generic over V. We have to show the tree property in V[G]. Suppose that T is a \aleph_2 -tree in V[G]. Note that since $\kappa = \aleph_2^{V[G]}$, this means that T is a κ -tree. We have to show that there is an unbounded branch through T.

Let $j: V \to N$ be an elementary embedding with critical point κ . Recall that we showed that $j(\mathbb{M})$ projects to \mathbb{M} , and so we can lift the embedding to $j: V[G] \to N[G^*]$.

Lemma 3. There is a branch b through T in $N[G^*]$ (and so in $V[G^*]$).

Proof. Note that in $N[G^*]$, j(T) is a $j(\kappa)$ -tree. Since the sizes of the levels of T are below the critical point, we can also assume that for every level $\alpha < \kappa$, $j(T_{\alpha}) = T_{\alpha} = j(T)_{\alpha}$.

Let $u \in j(T)_{\kappa}$, i.e. a node on the κ -th level of j(T). Let $b = \{v \in j(T) \mid v <_{j(T)} u\}$. Since j(T) is a tree, b is a well ordered set. Also, for every $v \in b$, there is some $\alpha < \kappa$, such that $v \in j(T)_{\alpha} = T_{\alpha}$. I.e. $b \subset T$. And since the order type of b is κ , it follows that b is an unbounded branch through T.

We want to show that T has a branch in V[G]. So far, we have that T has a branch in the bigger model $V[G^*]$. Next we want to use branch preservation lemmas to show that forcing to get from V[G] to $V[G^*]$ could not have added a new branch, i.e. that b must already exists in V[G]. The problem is that the forcing to get from G to G^* does not have the nice properties, like closure or Knaster-ness, that are used in the branch preservation lemmas.

To deal with that problem, recall that \mathbb{M} is the projection of $\mathbb{P} \times \mathbb{Q}$, where \mathbb{Q} is ω_1 -closed in V and $\mathbb{P} = Add(\omega, \kappa)$. We will show that something similar is true about $j(\mathbb{M})$.

INTERLUDE ON PROJECTIONS:

Suppose that \mathbb{R} and \mathbb{R}^* are any two posets, such that \mathbb{R}^* projects to \mathbb{R} . Let $\pi : \mathbb{R}^* \to \mathbb{R}$ be a projection, and suppose that H is \mathbb{R} -generic.

Definition 4. In V[H], we set $\mathbb{R}^*/H := \{p \in \mathbb{R}^* \mid \pi(p) \in H\}$.

Lemma 5. If G is \mathbb{R}^*/H generic over V[H], then G is \mathbb{R}^* -generic over V, and so $V \subset V[H] \subset V[H][G] = V[G]$.

Proof. G is a filter by assumption, so it is enough to show genericity. Suppose that $D \in V$ is a dense subset of \mathbb{R}^* . Let $D^* = D \cap \mathbb{R}^*/H$. We claim that D^* is a dense subset of \mathbb{R}^*/H . Fix $p \in \mathbb{R}^*/H$. In V, let $D_p = \{\pi(q) \mid q \in D, q \leq p\}$.

Claim 6. D_p is dense below $\pi(p)$.

Proof. For any $r \in \mathbb{R}$, $r \leq \pi(p)$, using that π is a projection, let $p' \in \mathbb{R}^*$ be such that $\pi(p') \leq r$. Then let $q \leq p'$ be in D. Then $\pi(q) \in D_p$ and $\pi(q) \leq r$.

So, let $r \in D_p \cap H$. Say $r = \pi(q)$ for some $q \in D$, with $q \leq p$. Then $q \in D^*$.

Since G is \mathbb{R}^*/H -generic, we have that $D^* \cap G \neq \emptyset$, and so $D \cap G \neq \emptyset$.

Next we give an alternative definition for projections:

3

WEEK 7

Definition 7. \mathbb{R}^* projects to \mathbb{R} iff whenever G is \mathbb{R}^* -generic, then in V[G], we can define a \mathbb{R} -generic filer.

Definition 8. We say that \mathbb{R}^* is isomorphic to \mathbb{R} if \mathbb{R}^* projects to \mathbb{R} and \mathbb{R} projects to \mathbb{R}^* .

BACK TO THE MITCHELL THEOREM:

Recall that \mathbb{P} is $Add(\omega, \kappa)$ and $j: V \to N$ is an elementary embedding with critical point κ , and so $j(\mathbb{P}) = Add(\omega, j(\kappa))$. Let H be \mathbb{P} generic over V. Define \mathbb{P}^* to be the set of all conditions p in $j(\mathbb{P})$ such that $dom(p) \cap \kappa \times \omega$ is empty. I.e. $\mathbb{P}^* = Add(\omega, j(\kappa) \setminus \kappa)$.

Lemma 9. In V[H], \mathbb{P}^* is isomorphic to $j(\mathbb{P})/H = \{p \in j(\mathbb{P}) \mid p \upharpoonright \kappa \times \omega \in H\}$.

Proof. For the first direction, suppose that H^* is \mathbb{P}^* -generic over V[H]. In $V[H][H^*]$, define $K := \{p \in j(\mathbb{P})/H \mid p \upharpoonright j(\kappa) \setminus \kappa \times \omega \in H^*\}$. We want to show that K is $j(\mathbb{P})/H$ generic over V[H]. It is a filter because both H and H^* are. For genericity, suppose that $D \in V[H]$ is a dense subset of $j(\mathbb{P})/H$. Let $D^* = \{p \upharpoonright j(\kappa) \setminus \kappa \times \omega \mid p \in D\}$. Then D is a dense subset of \mathbb{P}^* , so there is some $q \in D \cap H^*$. Let p witness that q is in D^* . Then $p \in D \cap K$.

For the other direction, suppose that K is $j(\mathbb{P})/H$ generic over V[H]. In V[H][K], define $H^* := K \cap \mathbb{P}^*$. H^* is a filter because K is a filter and for any two $p, q \in \mathbb{P}^*$, $p \cup q$ is also in \mathbb{P}^* . For genericity, suppose that $D \in V[H]$ is a dense subset of \mathbb{P}^* . Then the set $E = \{p \in j(\mathbb{P})/H \mid p \upharpoonright j(\kappa) \setminus \kappa \times \omega \in D\}$ is a dense subset of $j(\mathbb{P})/H$. Let $p \in E \cap K$ and $q = p \upharpoonright j(\kappa) \setminus \kappa \times \omega$. Then $q \in D \cap H^*$.