MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 7

Lemma 1. (Silver) Let $\tau<\kappa$ be regular cardinals, such that $2^{\tau} \geq \kappa$. Suppose that T is a κ tree and \mathbb{P} is τ^{+}-closed for some $\tau<\kappa$. Then forcing with \mathbb{P} does not add new branches to T.

Proof. Suppose otherwise. Let \dot{b} be a name for a branch, forced to be such by the empty condition. Working in V, construct $\left\langle s_{\sigma}, p_{\sigma} \mid \sigma \in 2^{<\tau}\right\rangle$ by induction on the length of σ, such that:
(1) Every $s_{\sigma} \in T, p_{\sigma} \in \mathbb{P}$ and $p_{\sigma} \Vdash s_{\sigma} \in \dot{b}$
(2) If $\sigma_{1} \subsetneq \sigma_{2}$, then $s_{\sigma_{2}}<_{T} s_{\sigma_{1}}$ and $p_{\sigma_{2}} \leq p_{\sigma_{1}}$
(3) For all $\alpha<\tau$, there is some $\beta_{\alpha}<\kappa$, such that for every $\sigma \in 2^{\alpha}$, $s_{\sigma} \in T_{\beta_{\alpha}}$
(4) For every $\sigma, s_{\sigma \frown 0}$ and $s_{\sigma \frown 1}$ are incomparable nodes.

At limit stages we use the closure of \mathbb{P}. More precisely, if α is limit, $\sigma \in 2^{\alpha}$, let p_{σ}^{\prime} be stronger than all $p_{\sigma\lceil i}$ for $i<\alpha$. Also let $\beta_{\alpha}=\sup _{i<\alpha} \beta_{i}$. Then let $p_{\sigma} \leq p_{\sigma}^{\prime}$ and $s_{\sigma} \in T_{\beta_{\alpha}}$ be such that $p_{\sigma} \Vdash s_{\sigma} \in \dot{b}$. We can find these since \dot{b} is forced to meet every level.

For the successor stage, suppose that we have constructed p_{σ}, s_{σ} and β_{α}, where $\sigma \in 2^{\alpha}$. Using the splitting lemma, since \dot{b} is a new branch, we have that there are conditions $q_{\sigma \frown 0}, q_{\sigma \frown 1}$ stronger than p_{σ} and nodes $s_{\sigma \frown 0}, s_{\sigma \frown 1}$, in $T_{\beta_{\alpha}+1}$ such that $q_{\sigma-0} \Vdash s_{\sigma \frown 0} \in \dot{b}$ and $q_{\sigma \frown 1} \Vdash s_{\sigma \frown 1} \in \dot{b}$.

Now for every $f \in 2^{\tau}$, let p_{f} be stronger than all $p_{f \upharpoonright \alpha}$, for $\alpha<\tau$. Here we use that \mathbb{P} is τ^{+}-closed, i.e. sequences of length τ have a lower bound. Let $\beta=\sup _{\alpha<\tau} \beta_{\alpha}<\kappa$. For every $f \in 2^{\tau}$, let $q_{f} \leq p_{f}$ and $s_{f} \in T_{\beta}$ be such that $q_{f} \Vdash s_{f} \in \dot{b}$. Again here we use that \dot{b} is forced to meet every level (since it is forced to be a branch).

But then by the splitting, we have that whenever $f \neq g, s_{f} \neq s_{g}$. But $\left|T_{\beta}\right|<\kappa$ and $2^{\tau} \geq \kappa$. Contradiction.

Corollary 2. Suppose that T is an ω_{2}-tree, \mathbb{Q} is ω_{1}-closed, and $2^{\omega}=\omega_{2}$. Then \mathbb{Q} does not add new branches through T.

Let G be \mathbb{M}-generic over V. We have to show the tree property in $V[G]$. Suppose that T is a \aleph_{2}-tree in $V[G]$. Note that since $\kappa=\aleph_{2}^{V[G]}$, this means that T is a κ-tree. We have to show that there is an unbounded branch through T.

Let $j: V \rightarrow N$ be an elementary embedding with critical point κ. Recall that we showed that $j(\mathbb{M})$ projects to \mathbb{M}, and so we can lift the embedding to $j: V[G] \rightarrow N\left[G^{*}\right]$.

Lemma 3. There is a branch b through T in $N\left[G^{*}\right]$ (and so in $V\left[G^{*}\right]$).
Proof. Note that in $N\left[G^{*}\right], j(T)$ is a $j(\kappa)$-tree. Since the sizes of the levels of T are below the critical point, we can also assume that for every level $\alpha<\kappa, j\left(T_{\alpha}\right)=T_{\alpha}=j(T)_{\alpha}$.

Let $u \in j(T)_{\kappa}$, i.e. a node on the κ-th level of $j(T)$. Let $b=\{v \in j(T) \mid$ $\left.v<_{j(T)} u\right\}$. Since $j(T)$ is a tree, b is a well ordered set. Also, for every $v \in b$, there is some $\alpha<\kappa$, such that $v \in j(T)_{\alpha}=T_{\alpha}$. I.e. $b \subset T$. And since the order type of b is κ, it follows that b is an unbounded branch through T.

We want to show that T has a branch in $V[G]$. So far, we have that T has a branch in the bigger model $V\left[G^{*}\right]$. Next we want to use branch preservation lemmas to show that forcing to get from $V[G]$ to $V\left[G^{*}\right]$ could not have added a new branch, i.e. that b must already exists in $V[G]$. The problem is that the forcing to get from G to G^{*} does not have the nice properties, like closure or Knaster-ness, that are used in the branch preservation lemmas.

To deal with that problem, recall that \mathbb{M} is the projection of $\mathbb{P} \times \mathbb{Q}$, where \mathbb{Q} is ω_{1}-closed in V and $\mathbb{P}=A d d(\omega, \kappa)$. We will show that something similar is true about $j(\mathbb{M})$.

INTERLUDE ON PROJECTIONS:

Suppose that \mathbb{R} and \mathbb{R}^{*} are any two posets, such that \mathbb{R}^{*} projects to \mathbb{R}. Let $\pi: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be a projection, and suppose that H is \mathbb{R}-generic.

Definition 4. In $V[H]$, we set $\mathbb{R}^{*} / H:=\left\{p \in \mathbb{R}^{*} \mid \pi(p) \in H\right\}$.
Lemma 5. If G is \mathbb{R}^{*} / H generic over $V[H]$, then G is \mathbb{R}^{*}-generic over V, and so $V \subset V[H] \subset V[H][G]=V[G]$.

Proof. G is a filter by assumption, so it is enough to show genericity. Suppose that $D \in V$ is a dense subset of \mathbb{R}^{*}. Let $D^{*}=D \cap \mathbb{R}^{*} / H$. We claim that D^{*} is a dense subset of \mathbb{R}^{*} / H. Fix $p \in \mathbb{R}^{*} / H$. In V, let $D_{p}=\{\pi(q) \mid q \in D, q \leq p\}$.
Claim 6. D_{p} is dense below $\pi(p)$.
Proof. For any $r \in \mathbb{R}, r \leq \pi(p)$, using that π is a projection, let $p^{\prime} \in \mathbb{R}^{*}$ be such that $\pi\left(p^{\prime}\right) \leq r$. Then let $q \leq p^{\prime}$ be in D. Then $\pi(q) \in D_{p}$ and $\pi(q) \leq r$.

So, let $r \in D_{p} \cap H$. Say $r=\pi(q)$ for some $q \in D$, with $q \leq p$. Then $q \in D^{*}$.

Since G is \mathbb{R}^{*} / H-generic, we have that $D^{*} \cap G \neq \emptyset$, and so $D \cap G \neq \emptyset$.

Next we give an alternative definition for projections:

Definition 7. \mathbb{R}^{*} projects to \mathbb{R} iff whenever G is \mathbb{R}^{*}-generic, then in $V[G]$, we can define a \mathbb{R}-generic filer.
Definition 8. We say that \mathbb{R}^{*} is isomorphic to \mathbb{R} if \mathbb{R}^{*} projects to \mathbb{R} and \mathbb{R} projects to \mathbb{R}^{*}.

BACK TO THE MITCHELL THEOREM:

Recall that \mathbb{P} is $A d d(\omega, \kappa)$ and $j: V \rightarrow N$ is an elementary embedding with critical point κ, and so $j(\mathbb{P})=A d d(\omega, j(\kappa))$. Let H be \mathbb{P} generic over V. Define \mathbb{P}^{*} to be the set of all conditions p in $j(\mathbb{P})$ such that $\operatorname{dom}(p) \cap \kappa \times \omega$ is empty. I.e. $\mathbb{P}^{*}=\operatorname{Add}(\omega, j(\kappa) \backslash \kappa)$.

Lemma 9. In $V[H], \mathbb{P}^{*}$ is isomorphic to $j(\mathbb{P}) / H=\{p \in j(\mathbb{P}) \mid p \upharpoonright \kappa \times \omega \in$ $H\}$.
Proof. For the first direction, suppose that H^{*} is \mathbb{P}^{*}-generic over $V[H]$. In $V[H]\left[H^{*}\right]$, define $K:=\left\{p \in j(\mathbb{P}) / H \mid p \upharpoonright j(\kappa) \backslash \kappa \times \omega \in H^{*}\right\}$. We want to show that K is $j(\mathbb{P}) / H$ generic over $V[H]$. It is a filter because both H and H^{*} are. For genericity, suppose that $D \in V[H]$ is a dense subset of $j(\mathbb{P}) / H$. Let $D^{*}=\{p \upharpoonright j(\kappa) \backslash \kappa \times \omega \mid p \in D\}$. Then D is a dense subset of \mathbb{P}^{*}, so there is some $q \in D \cap H^{*}$. Let p witness that q is in D^{*}. Then $p \in D \cap K$.

For the other direction, suppose that K is $j(\mathbb{P}) / H$ generic over $V[H]$. In $V[H][K]$, define $H^{*}:=K \cap \mathbb{P}^{*} . H^{*}$ is a filter because K is a filter and for any two $p, q \in \mathbb{P}^{*}, p \cup q$ is also in \mathbb{P}^{*}. For genericity, suppose that $D \in V[H]$ is a dense subset of \mathbb{P}^{*}. Then the set $E=\{p \in j(\mathbb{P}) / H \mid p \upharpoonright j(\kappa) \backslash \kappa \times \omega \in D\}$ is a dense subset of $j(\mathbb{P}) / H$. Let $p \in E \cap K$ and $q=p \upharpoonright j(\kappa) \backslash \kappa \times \omega$. Then $q \in D \cap H^{*}$.

